Assessing sperm whale (Physeter macrocephalus) movements within the western Mediterranean Sea through photo-identification

EVA CARPINELLIa,b,c,*, PAULINE GAUFFIERa, PHILIPPE VERBORGHa, SABINA AIROLDIb, LÉA DAVIDd, NATHALIE DI-MÉGLIoö, ANA CANADASö, ALEXANDROS FRANTZISö, LUKE RENDELLö, TIM LEWISO, BARBARA MUSSII, DANIELA SILVIA PACESö and RENAUD DE STEPHANISk

aCIRCE (Conservation, Information and Research on Cetaceans), Cabeza de Manzaneda, Pelayo, Algeciras, Cadiz, Spain
bTethys Research Institute, Milano, Italy
cCIBRA, Centro Interdisciplinare di Bioacustica e Ricerche Ambientali, University of Pavia, Pavia, Italy
dEcoOcéan Institut, Montpellier, France
eAlnilam, Cándamo, Madrid, Spain
fPelagos Cetacean Research Institute, Vouliagmeni, Greece
gSea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St. Andrews, St. Andrews, Fife, UK
hInternational Fund for Animal Welfare, London, UK
iOceanomare Delphis Onlus, Rome, Italy
jDepartment of Environmental Biology, University of Rome "La Sapienza", Rome, Italy
kGEMA, Department of Conservation Biology, Estación Biológica de Doñana (CSIC), Sevilla, Spain

ABSTRACT

1. The Mediterranean sperm whale sub-population is considered ‘Endangered’ by both ACCOBAMS and the IUCN. Conservation policies require protected species populations to be monitored, but the distribution and movements of sperm whales across the Mediterranean Sea are still poorly understood.

2. To provide insight into sperm whale movements, the photo-identification catalogue from the Strait of Gibraltar was compared with seven other collections: (a) the North Atlantic and Mediterranean Sperm Whale Catalogue (NAMSC), and with photo-identification catalogues from (b) the Alboran Sea, Spain, (c) the Balearic Islands, Spain, (d) the Corso-Provençal Basin, France, (e) the Western Ligurian Sea, Italy, (f) the Tyrrhenian Sea, Italy, and (g) the Hellenic Trench, Greece.

3. Of 47 sperm whales identified in the Strait of Gibraltar between 1999 and 2011 a total of 15 animals (32%) were photographically recaptured in other sectors of the western Mediterranean Sea in different years. None of the Strait of Gibraltar sperm whales were resighted in Atlantic waters or in the eastern Mediterranean basin.

4. These results indicate long-range movements of the species throughout the whole western Mediterranean Sea, with a maximum straight-line distance of about 1600 km. The absence of any photographic recaptures between the Mediterranean Sea and the North Atlantic Ocean supports the genetic evidence of an isolated sub-population within the Mediterranean Sea.

5. Long-term photo-identification efforts and data sharing between institutions should be further encouraged to provide basic information necessary for the implementation of effective sperm whale conservation measures in the whole basin.

Copyright © 2014 John Wiley & Sons, Ltd.

*Correspondence to: Eva Carpinelli, CIRCE (Conservation, Information and Research on Cetaceans), Cabeza de Manzaneda no 3, Pelayo, 11390 Algeciras, Cadiz, Spain. E-mail: carpinelli.e@gmail.com
INTRODUCTION

The sperm whale (Physeter macrocephalus, Linnaeus 1758), the largest of the toothed whales, has a cosmopolitan distribution, with a large latitudinal range (Whitehead, 2003). Genetic analyses suggest that sperm whales of the Mediterranean Sea are a semi-isolated sub-population (Drouot et al., 2004a; Engelhaupt et al., 2009). Despite no current overall abundance estimates for the Mediterranean sub-population, it appears that this sub-population has declined over the past 20 years (Cañadas et al., 2005; Aguilar and Borrell, 2007; Lewis et al., 2007; Pirotta et al., 2011). By-catch in driftnets targeting swordfish (Reeves and Notarbartolo di Sciara, 2006), and ship strikes (Panigada et al., 2006) are two likely causes. The Mediterranean sperm whale sub-population is considered ‘Endangered’ according to ACCOBAMS and it has also been proposed that it should be included in the ‘Endangered’ category according to the International Union for the Conservation of Nature (IUCN) criteria (Reeves and Notarbartolo di Sciara, 2006; Notarbartolo di Sciara and Birkun, 2010). A better understanding of the movements of sperm whales within the Mediterranean basin could help in the development of effective conservation measures for this species.

Sperm whales depend on resources that vary in space and time, and movement is crucial for their survival (Jaquet et al., 2003). Both sexes are capable of performing long latitudinal and longitudinal migrations across oceanic basins. Recent photo-ID studies have shown that these movements can reach 4400 km for males moving between the Azores and Norway (Steiner et al., 2009). Similarly, while analysis of ‘discovery–mark–recovery’ data for sperm whales in the north Pacific has shown maximum movements recorded for females of 4332 km and 5178 km for males (Mizroch and Rice, 2013). Sperm whales inhabiting semi-enclosed areas like the western Mediterranean Sea should be equally capable of performing such long movements, even if they are restricted by the Strait of Gibraltar (290 m deep) in the west, and the Sicily Sill (316 m deep) in the east. Because the Strait of Gibraltar is the only connection between the Mediterranean Sea and the Atlantic Ocean, and since sperm whales have been routinely observed there both in summer (de Stephanis et al., 2008) and winter (Gauffier et al., 2012), this is an interesting study area, allowing researchers to investigate whether sperm whales move between the Mediterranean and Atlantic. Previous results from multi-year monitoring surveys (Fernandez-Casado et al., 2001; de Stephanis, 2007; de Stephanis et al., 2008; Frantzis et al., 2011) are consistent with those from genetic studies (Drouot et al., 2004a; Engelhaupt et al., 2009) and indicate that there are minimal or irregular movements of sperm whales through the Strait of Gibraltar. The aim of this study is to compare the Strait of Gibraltar photo-identification catalogue with several other catalogues from different regions of the Mediterranean Sea and North Atlantic Ocean, trying to understand if there are regular movements of sperm whales between the Mediterranean Sea and the Atlantic Ocean and to look at possible long-range movements within the Mediterranean Sea.

METHODS

CIRCE’s sperm whale photo-identification catalogue from the Strait of Gibraltar was compared with (a) the North Atlantic and Mediterranean Sperm Whale Catalogue (NAMSC, International Fund for Animal Welfare, updated until 2004) and with the photo-identification catalogues from (b) the Alboran Sea, Spain (Alnitak and Alnilam), (c) the Balearic Islands, Spain (Sea Mammal Research Unit-University of St Andrews), (d) the Corso-Provençal basin, France (EcoOcéan Institut), (e) the Western Ligurian Sea, Italy (Tethys Research Institute), (f) the Tyrrenhian Sea, Italy (Oceanomare Delphis), and (g) the Hellenic Trench, Greece (Pelagos Cetacean Research Institute).
Only flukes of solitary sperm whales (males and probable males) were used from this last catalogue. Catalogues are summarized in Table 1.

CIRCE’s catalogue uses pictures taken from whale-watching platforms in 1999–2000 and from a research motorboat (10 m) between 2001 and 2011. The pictures were taken using film (in 1999–2003) and digital (in 2004–2011) professional cameras. The best slide for each sighting between 1999 and 2003 was scanned to make it available in digital format. An identification number was given to each individual identified in the catalogue. Matches with previously identified individuals were made by comparing each new photograph with all the others in the catalogue using two observers. This was done by eye without the use of matching software. The low number of photographs to be matched meant that matching in this way was both more accurate and time efficient. After comparing new pictures with the catalogue, individuals which had not been seen in earlier years were given a new identification number. During the study period in the Strait of Gibraltar, 47 individual sperm whales were photo-identified with high photo quality. The photo-identification catalogue from the Strait of Gibraltar was compared by naked eye with the better images in NAMSC (1344 lower quality photos Q quality index ≤ 3, according to Arnbom (1987) were discarded), and with the other catalogues which all contained high quality photos.

RESULTS AND DISCUSSION

Table 2 summarizes all matches between the different catalogues. Out of CIRCE’s 47 sperm whales from the Strait of Gibraltar, 15 animals (32%) were photographically recaptured in other sectors of the western Mediterranean Sea, all in different years. Four individuals were resighted in the Alboran Sea (maximum straight-line distance of about 400 km), three in the Balearic Islands (maximum straight-line distance of about 800 km), six in the western Ligurian Sea (maximum straight-line distance of about 1600 km), six in the western Ligurian Sea (maximum straight-line distance of about 1600 km), one individual both in the Alboran and the Ligurian Sea, and another one in the Alboran Sea, the Ligurian Sea and the Corso-Provençal basin (maximum straight-line distance of about 1200 km) (Figure 1 and 2; Table 2). None of the 47 sperm whales of the Strait of Gibraltar were resighted in North Atlantic waters, none in the Tyrrhenian Sea and none in the Hellenic Trench in Greece. These results show long-range bidirectional movements of sperm whales throughout the whole western Mediterranean Sea, with a maximum straight-line distance of about 1600 km. Resighted sperm whales show different individual movement patterns. The individual Pm_Gib_016 showed bi-directional movements between the Strait of Gibraltar, a feeding area (de Stephanis et al., 2008), and the Balearic Islands, which are believed

<table>
<thead>
<tr>
<th>Geographical area</th>
<th>Contributors</th>
<th>Catalogue features</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strait of Gibraltar Spain</td>
<td>CIRCE (Conservation, Information and Research on Cetaceans)</td>
<td>47 individuals</td>
<td>1999–2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>310 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 individuals</td>
<td>2006–2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>57 individuals</td>
<td>2003–2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>168 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>35 individuals</td>
<td>1994–2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>91 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>105 individuals</td>
<td>1990–2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>193 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>57 individuals</td>
<td>2003–2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>33 individuals</td>
<td>1998–2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>77 sightings</td>
<td></td>
</tr>
<tr>
<td>Alboran Sea Spain</td>
<td>Alnitak Marine Research Centre and Alnilam</td>
<td>11 individuals</td>
<td>2006–2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 sightings</td>
<td></td>
</tr>
<tr>
<td>Balearic Islands Spain</td>
<td>University of St. Andrews</td>
<td>57 individuals</td>
<td>2003–2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>168 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>35 individuals</td>
<td>1994–2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>91 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>105 individuals</td>
<td>1990–2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>193 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>57 individuals</td>
<td>2003–2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>33 individuals</td>
<td>1998–2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>77 sightings</td>
<td></td>
</tr>
<tr>
<td>Ligurian Sea Italy</td>
<td>Tethys Research Institute</td>
<td>11 individuals</td>
<td>2006–2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>57 individuals</td>
<td>2003–2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>168 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>35 individuals</td>
<td>1994–2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>91 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>105 individuals</td>
<td>1990–2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>193 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>57 individuals</td>
<td>2003–2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>33 individuals</td>
<td>1998–2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>77 sightings</td>
<td></td>
</tr>
<tr>
<td>Tyrrhenian Sea Italy</td>
<td>Oceanomare Delphis</td>
<td>11 individuals</td>
<td>2006–2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>57 individuals</td>
<td>2003–2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>168 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>35 individuals</td>
<td>1994–2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>91 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>105 individuals</td>
<td>1990–2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>193 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>57 individuals</td>
<td>2003–2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>33 individuals</td>
<td>1998–2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>77 sightings</td>
<td></td>
</tr>
<tr>
<td>Hellenic Trench Greece</td>
<td>Pelagios Cetacean Research Institute</td>
<td>11 individuals</td>
<td>2006–2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>57 individuals</td>
<td>2003–2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>168 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>35 individuals</td>
<td>1994–2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>91 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>105 individuals</td>
<td>1990–2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>193 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>57 individuals</td>
<td>2003–2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>33 individuals</td>
<td>1998–2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>77 sightings</td>
<td></td>
</tr>
<tr>
<td>North Atlantic Ocean</td>
<td>NAMSC North Atlantic and Mediterranean Sperm whales Catalogue (IFAW) (only the pictures of the North Atlantic are included)</td>
<td>11 individuals</td>
<td>2006–2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>57 individuals</td>
<td>2003–2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>168 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>35 individuals</td>
<td>1994–2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>91 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>105 individuals</td>
<td>1990–2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>193 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>57 individuals</td>
<td>2003–2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90 sightings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>33 individuals</td>
<td>1998–2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>77 sightings</td>
<td></td>
</tr>
</tbody>
</table>
to have an important role as a breeding ground (Gannier et al., 2002; Drouot-Dulau and Gannier, 2007; Pirotta et al., 2011), while Pm_Gib_043 moved between two feeding areas (Strait of Gibraltar and Ligurian Sea) (Figure 1) (Drouot et al., 2004b; de Stephanis et al., 2008). However, other individuals showed site fidelity over the years (e.g. Pm_Gib_022; Figure 1; Table 2). Sperm whales appear to move through the whole western Mediterranean Sea, consistent with the analysis of Rendell et al. (2014) who found six matches between the Ligurian Sea and the Balaeric Islands based on a catalogue of 180 individuals collected over 18 years.

Social groups of females with calves are routinely encountered in the Balearic Islands, Hellenic Trench and Tyrrenian Sea (Frantzis et al., 2003, 2014; Rendell et al., 2014; Mussi et al., 2005; Drouot-Dulau and Gannier, 2007; Pirotta et al., 2011). In contrast, in both the Strait of Gibraltar and Ligurian Sea, social groups with females and calves have rarely been observed over the last two decades (Gannier et al., 2002). This could indicate that female groups are more sedentary than males making the sub-population even more vulnerable.

The absence of any photographic recaptures between the Strait of Gibraltar and the North Atlantic Ocean is consistent with the

Table 2. Details of sperm whales resighted in different areas of the Mediterranean Sea

<table>
<thead>
<tr>
<th>Whale code</th>
<th>N</th>
<th>Geographical area</th>
<th>Dates of encounters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Alboran Sea</td>
<td>21 June 2008</td>
</tr>
<tr>
<td>Pm_Gib_006</td>
<td>8</td>
<td>Ligurian Sea</td>
<td>14 September 1999</td>
</tr>
<tr>
<td>Pm_Gib_016</td>
<td>3</td>
<td>Strait of Gibraltar</td>
<td>1 May 2003, 15 June 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Balearic Islands</td>
<td>29 July 2004</td>
</tr>
<tr>
<td>Pm_Gib_023</td>
<td>6</td>
<td>Ligurian Sea</td>
<td>12 August 2003, 21 August 2003, 22 August 2003, 18 September 2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Strait of Gibraltar</td>
<td>19 June 2006, 26 June 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Strait of Gibraltar</td>
<td>28 July 2007</td>
</tr>
<tr>
<td>Pm_Gib_027</td>
<td>3</td>
<td>Ligurian Sea</td>
<td>30 May 2007, 22 June 2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alboran Sea</td>
<td>21 June 2008</td>
</tr>
<tr>
<td>Pm_Gib_032</td>
<td>3</td>
<td>Alboran Sea</td>
<td>10 September 2002, 20 June 2008</td>
</tr>
<tr>
<td>Pm_Gib_034</td>
<td>2</td>
<td>Strait of Gibraltar</td>
<td>13 April 2008</td>
</tr>
<tr>
<td>Pm_Gib_037</td>
<td>3</td>
<td>Ligurian Sea</td>
<td>20 June 2008</td>
</tr>
<tr>
<td>Pm_Gib_040</td>
<td>2</td>
<td>Strait of Gibraltar</td>
<td>13 April 2008</td>
</tr>
<tr>
<td>Pm_Gib_042</td>
<td>2</td>
<td>Ligurian Sea</td>
<td>29 July 2008</td>
</tr>
<tr>
<td>Pm_Gib_043</td>
<td>6</td>
<td>Ligurian Sea</td>
<td>14 August 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Strait of Gibraltar</td>
<td>7 August 2001</td>
</tr>
<tr>
<td>Pm_Gib_045</td>
<td>2</td>
<td>Ligurian Sea</td>
<td>2 September 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Strait of Gibraltar</td>
<td>27 July 2007</td>
</tr>
<tr>
<td>Pm_Gib_048</td>
<td>2</td>
<td>Strait of Gibraltar</td>
<td>12 May 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ligurian Sea</td>
<td>21 June 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corso-Provençal basin</td>
<td>29 July 2010</td>
</tr>
<tr>
<td>Pm_Gib_045</td>
<td>2</td>
<td>Ligurian Sea</td>
<td>7 September 2007</td>
</tr>
<tr>
<td>Pm_Gib_048</td>
<td>2</td>
<td>Strait of Gibraltar</td>
<td>17 May 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Strait of Gibraltar</td>
<td>25 July 2006</td>
</tr>
</tbody>
</table>

N: number of encounters of each individual
results obtained by Drouot et al. (2004a) and Engelhaupt et al. (2009), who suggested the existence of a genetically isolated Mediterranean sub-population.

NAMSC contains over 2350 images from the Azores as well as images from the Canary Islands, Madeira, Cape Verde and Atlantic Iberia (overall total 2451) and the lack of photo-identification matches with the

Figure 1. Individuals from the Strait of Gibraltar resighted in the Mediterranean Sea. Numbers indicate chronological order of observation.

Figure 2. Number of sperm whales of the Strait of Gibraltar photographically recaptured in different areas of the Mediterranean Sea.
Atlantic individuals is strong evidence that the movement is predominantly, though not necessarily exclusively between the Strait of Gibraltar and the Mediterranean Sea rather than between the Strait and the Atlantic Ocean. However, there are few images in NAMSC from the Atlantic areas in the immediate vicinity of the Strait of Gibraltar, such as the Gulf of Cadiz, Portugal or Morocco.

Sperm whales are listed as Endangered in the Mediterranean Sea (Reeves and Notarbartolo di Sciara, 2006). They are threatened by many anthropogenic factors that are exacerbated in this region because of the enclosed geography of the Mediterranean Sea, and the large human populations that surround it, and the high level of activity within it. These factors include marine traffic, noise, interactions with fisheries, ingestion of plastic debris (de Stephanis et al., 2013). Conservation efforts are, however, hampered by a lack of knowledge about the population biology of the sperm whales that inhabit the Mediterranean Sea and the degree to which there is population structure within the Mediterranean Sea itself. Studies such as this one are important in helping us understand the extent to which the Mediterranean population might be further subdivided across the various basins.

Results show that there is an exchange of male sperm whales within the whole western Mediterranean basin (see also Rendell et al., 2014) but there is no evidence of movements between the Atlantic and Mediterranean Sea. This means that effective conservation requires efforts that cross national boundaries, focused for example on the implementation of international monitoring programmes. Furthermore this study confirms that photo-identification is an effective, non-invasive technique to monitor cetacean movements over several years, which can be applied on a basin-wide scale. The comparison of all existing and available sperm whale photo-identification material for the Mediterranean Sea should help to obtain baseline information on the species’ abundance, distribution and population trends. Other research institutions could be involved in monitoring sperm whales using photo-identification, and whale watching companies could make a substantial contribution. The establishment of a
REFERENCES

